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Abstract

The granularity adjustment technique is embedded into a general multi-factor model. This allows a

very  simple  statement  of  the  conditions  under  which  the  impact  of  unsystematic  risk  factors

asymptotically vanishes. It has always been taken for granted that the granularity adjustment must

be positive. In this paper, a counter-example with negative value of the granularity adjustment is

given for the well-known Vasicek (2002) model. This means a discount in terms of capital reserves

for  a  less  diversified  credit  portfolio.  An  in-depth  analyses  of  the  analytical  formula  of  the

granularity adjustment reveals that such negative values are possible if the conditional variance is

higher for less favourable values of the systematic risk factors. The reason is that this implies a

relatively high survival probability in bad states of nature.

 

JEL classification: D 81, G 21, G 28
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1. Introduction

From the classical capital asset pricing model, the distinction between systematic and unsystematic

risk is well known. Unlike systematic risk, unsystematic or idiosyncratic risk can be eliminated

through diversification. Exactly the same also applies to a credit portfolio, where the influence of

borrower specific risk vanishes completely in a sufficiently diversified portfolio. This can formally

be shown by a simple application of the law of large numbers to a general factor model. Because

the influence of an individual borrower on a large credit portfolio is very small,  the aggregated loss

will become non-stochastic if the values of the systematic risk factors are taken as given. The loss

then equals the conditional mean of the aggregated loss, which depends only on the more or less

favourable realization of the systematic risk factors.

However, no real-world credit portfolio is perfectly diversified. In calculating Value at Risk (VaR)

for a credit portfolio, a correction has therefore to be made in order to account for the remaining

unsystematic risk. The so-called granularity adjustment technique was introduced by Gordy (2003),

(2004). A closed-form expression for the adjustment has been developed by Wilde (2001),  Martin

and Wilde (2002) and Emmer/Tasche (2005). The granularity adjustment was also part of an earlier

version of the new capital accord (Basel II, see BCBS (2004)). Although the granularity adjustment

had been later dropped from the final version of the capital  accord, the concept is  nonetheless

interesting from a theoretical point of view. The key idea is that instead of calculating both types of

risks simultaneously, a two step model can be developed with an add-up for unsystematic risk.

In this paper, the granularity adjustment technique is embedded into a general multi-factor model.

This allows a very simple statement of the conditions under which the impact of unsystematic risk

factors asymptotically vanishes. In the existing literature, the analytical formula for the granularity

adjustment  has  only been stated  for  the one-factor  model.  Pykhtin  (2004)  provided a  different

application  of  the granularity  adjustment  technique  to  the  multi-factor  case.  He  develops  an

approximation to a multi-factor model via a comparable one-factor model. With increasing factor

correlation, the respective adjustment term converges to zero.

The granularity adjustment has mostly been considered as a technical tool which could be useful in

calculating capital requirements. But it may also provide theoretical insights. For example, it has

always been taken for granted that the granularity adjustment must be positive.  In this paper, a

counter-example with negative value of the  granularity adjustment  is  given for the well-known
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Vasicek (2002) model. This means a discount in terms of capital  reserves for a less diversified

credit portfolio. An in-depth analyses of the analytical formula of the granularity adjustment reveals

that such negative values are possible if the conditional variance is higher for less favourable values

of the systematic risk factors. The reason is that this implies a relatively high survival probability in

bad states of nature.

The paper is organized as follows: Section 2 develops the general factor model and describes its

asymptotic  behaviour.  Section  3  is  devoted  to  the  derivation  and  analysis  of  the  granularity

adjustment.  An example  where  the  granularity adjustment  is  negative  is  given together  with  a

theoretical analyses of this phenomena. Some final remarks are given in Section 4.

2. General Factor Model 

2.1 Basic Assumptions

Consider a portfolio of n loans with exposure sizes A1,.., An. As a percentage of exposure size, the

difference between the current value of each loan and the value at the end of the planning horizon

(e.g. one year) is described by a random loss variable Li. Formally, the relative loss Li of the value

of the loan could be positive as well as negative. It is therefore irrelevant whether losses are defined

on a book-value or a mark-to-market basis. For example, if a mark-to-market model is used, an

upgrading will result in a gain in market value and consequently implies a negative value of the loss

variable Li.

Let each Li  = Li(X,εi) be given as a function of some systematic risk factors X = (X1,...,Xk ) and an

unsystematic risk factor εi. The systematic risk factors may also be called background factors and

reflect the state of the business cycle in the different industry sectors. Each systematic risk factor

can be thought of being assigned to a certain sector of the economy. The systematic risk factors

generally have an influence on more than one borrower in the portfolio and are the reason why

default events are stochastic dependent. On the other hand, each unsystematic risk factor εi has an

influence on only one specific borrower. Unlike for the systematic risk factors, which may or may

not be correlated, unsystematic risk factors are always assumed to be pairwise independent.

Many credit risk models can be seen as special cases of this simple but very general approach.

Structural models such as the Merton (1974) model or CreditMetrics (1997) assume that default
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events or rating changes are driven by the evolution of the value of the firm assets, which in turn

depend  on  the  realization  of  some  systematic  and  unsystematic  risk  factors.  The  risk  factors

therefore indirectly determine the potential loss  Li=Li(X,εi)  of each loan. Of course, the concrete

functional relationship depends on how the particular model is specified, which however is not

relevant for the general analysis.

A well-known example for an intensity or default rate model is CreditRisk+ (1997). This model

assumes that default probabilities pi = pi(X) are not constant, but a function of certain background

factors X = (X1,...,Xk ).  In order to  match this  into the  above framework,  assume that  to  each

borrower there is assigned  an additional unsystematic risk factor εi and then define:

Li X , εi={LGDi , if εiN−1[ pi X ]
0 otherwise

                           (1)

Here,  it  is  assumed  that  the  εi are  standard  normal  distributed  and  N-1 is  the  inverse  of  the

cumulative  normal  distribution  function.  LGDi is  the  loss  given  default  which  will  arise  with

probability pi = pi(X) .

2.2 Diversification

Having the general factor model stated, it is now possible to clarify the role of diversification. As a

percentage of total exposure, the random loss of the entire portfolio at the end of the risk horizon is 

LP=
∑i=1

n
Ai Li

∑i=1

n
Ai

              (2)

Now assume that the realizations of the systematic risk factors X = (X1,...,Xk) occur  before the

realizations of the unsystematic risk factors εi. With given values of the systematic risk factors, LP is

the sum of stochastically independent random variables. Thus, the central  limit  theorem can be

applied. Conditional on X, the portfolio loss variable  LP is asymptotically normal-distributed with

mean
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μ LP∣X =
∑i=1

n
Ai μ Li∣X 

∑i=1

n
Ai

       (3)

and variance

σ 2LP∣X =
∑i=1

n
Ai

2 σ 2Li∣X 

∑i=1

n
Ai

2        (4)

However,  it  is  easy  to  show  that  if  0<Amin<Ai<Amax  and  σ2(Li|X)<σ2
max  for  all  i with  finite

boundaries  Amax  and  σ2
max ,  then  σ2(LP|X)→0  as n→ ∞  for  every given  realization  of X.  For  n

sufficiently large, the conditional variance tends to zero and the probability for an arbitrary small

deviation of LP from the conditional mean μ(LP|X) gets arbitrary small. 

Therefore, as a consequence of the law of large numbers, the conditional portfolio loss becomes

non-stochastic  in  a  very large,  infinitely fine-grained credit  portfolio.  This  is  the  mathematical

formulation  of  the  fact  how  borrower-specific  or  unsystematic  risk  can  be  eliminated  through

diversification. The only risk that remains is systematic risk, that is the risk that the actual values of

the systematic risk factors X = (X1,...,Xk) result in a higher or lower value of the conditional mean

μ(LP|X). If systematic risk factors are varying, the portfolio loss, considered as a percentage of total

exposure, fluctuates respectively.                 

If some lumpy credit  risk  remains  within  the  portfolio,  the  then non-zero conditional  variance

σ2(LP|X) is a natural measure for the amount of  unsystematic risk inherent to the credit portfolio.

The conditional variance will therefore play an prominent role in the formula for the granularity

adjustment  to  be  developed  later.  Note  that  the  conditional  variance  σ2(LP|X) depends  on  the

realization  of  the  systematic  risk factors.  In the  given context,  the  values  of  σ2(LP|X)  in  those

scenarios where the realization of the systematic risk factors give rise to high losses are of particular

importance. 

Two  additional  remarks  concerning  the  conditional  variance  can  be  made.  First,  as  a  direct

consequence of the so-called law of conditional variance, the average conditional variance over all

possible scenarios for the systematic risk factors equals the difference between the variance of LP

and the variance of μ(LP|X):
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μ[σ2(LP|X)] = σ2(LP) - σ2[μ(LP|X)]    (5)

That  is,  the  expectation  of  σ2(LP|X) is  that  part  of  the  portfolio  variance  that  is  caused  by

unsystematic risk.

Second, the similarities between the conditional variance and the Herfindahl index are obvious. The

Herfindahl index 

H=
∑i=1

n
Ai

2

∑i=1

n
Ai

2   (6)

is  an  often  used  measure  to  quantify  the  degree  of  concentration  in  credit  portfolios.  It  is

proportional  to  conditional  variance  σ2(LP|X) if  it  is  assumed  that for  each  borrower i, the

conditional variances σ2(Li|X) of the individual loan loss variables Li are the same. This implies that

differences regarding the distribution of potential  losses between the different borrowers can be

neglected. Concentration risks can then only arise from differences regarding the exposure sizes Ai.

However, if loans not only differ with respect to exposure sizes, but also with respect to e.g. default

probabilities or losses given default, then the Herfindahl index might be a to simple measure of

concentration risks.

2.3 One-factor model

As an illustration, consider a one factor model based on the following assumptions:

1) the loss variable Li is a decreasing function of only one systematic risk factor X,  i.e. X is a scalar

2) unsystematic risk is perfectly diversified away, i.e. Lp = μ(LP | X )

In this  case,  an explicit  expression for  portfolio  VaR with  confidence  level 1-α can be given.

Because of 

α = Prob[LP  > VaR1-α(LP)] = Prob[ μ(LP | X )  > VaR1-α(LP) ] = Prob(X < xα)        (7)
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where  xα is the respective  quantile of the systematic risk factor  X, portfolio  VaR, considered  as a

percentage of total exposure, is given as:

VaR1-α(LP) = μ(Li| X=xα ) =
∑i=1

n
Ai μ Li∣X =xα

∑i=1

n
Ai

                                  (8)

A direct decomposition of portfolio VaR is obviously possible: If the bank wants to survive with a

probability of at least  1-α, the amount of capital that must be reserved for each Euro borrowed to

borrower i is exactly given as μ(Li| X=xα ). Marginal VaR in a one factor model is then given as the

expected loss conditional on X=xα..

A special version of the one-factor model is attributed to Vasicek (2002). It assumes that borrower i

defaults if the return of the firms assets falls below a certain threshold Di:

r i= ρ X 1−ρ εiDi                                                                                         (9)

Here, ρ is the correlation coefficient of the asset returns and X, εi are independent standard normal

distributed random variables with mean zero and variance one. The coefficients are chosen so that

ri is also standard normal distributed. The relationship between default threshold and probability of

default  is  PDi=N-1(Di),  where  N is  the  cumulative  standard  normal  distribution  function.  With

default resulting in a loss given default  LGDi (as a percentage of the exposure  Ai), one gets the

following formula for marginal VaR:

μ(Li| X=xα) = LGDi Probεi
ND−1PDi− ρ xα

1−ρ


(10)

                    = LGDi N 
ND−1PDi− ρ xα

1−ρ


This type of model has also been adopted by the Basel Committee for Banking Supervision in its

proposals for the new Capital Accord. For example, in the consultative paper from January 2001,

formula (12) with x0,5% = -2,57 and ρ = 0,2 for a corporate loan portfolio was used to calculate the
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capital charge for a loan with default probability PDi. Some  modifications have been made in the

final version of the Capital Accord, but the main idea was preserved.

The assumption of only one systematic risk factor has been made by the Basel Committee because

this is the only case where capital charges are independent from portfolio composition. This is a

problematic assumption because it assumes a completely parallel development of business cycles in

all countries and industries. It is therefore irrelevant whether all borrowers of the bank belong to the

same sector or not. Contrary to that, exposure to systematic risk can be reduced in reality if loans are

well distributed over different industry and country sectors. But, unlike unsystematic risk, exposure

to systematic risk does nether completely vanish even in a perfectly diversified portfolio. 

In a multi-factor model, an exact decomposition of VaR invariant from portfolio composition is no

longer possible. However, as it has been shown that the conditional mean is generally the derivative

of VaR,1 the conditional mean remains to be a first order approximation of VaR contributions also

in a multi-factor model. The expectation is then to be calculated conditional on  LP  = VaR1-α(LP).

Because this can no longer be simplified to X=xα  if  X is not a scalar,  marginal VaR is no longer

portfolio invariant. Marginal capital requirements for an additional loan e.g. to a tech firm will then

not only depend on the individual default probability, but regularly also on the overall exposure of

the existing credit portfolio to the tech sector.

3 Granularity Adjustment 

3.1 Formula for  Granularity Adjustment

It has been shown that in a perfectly diversified credit loan portfolio, the random  variable LP can be

replaced by the random variable μ(LP|X). If the portfolio is not perfectly diversified, an adjustment

for unsystematic risk has to be made. The so called granularity adjustment is the difference of VaR

for μ(LP|X ) and VaR for LP. 

The granularity adjustment can be calculated via a sensitivity analysis of  VaR. However, because

the  first  derivative  of  VaR equals  the  conditional  mean  of  the  marginal  risk,  the  first  order

approximation of the error term in such a sensitivity analysis is zero. It is therefore necessary to also

know the second derivative of VaR. With the technical details left to appendix A, one finally gets
1 In the appendix, it  is shown that VaR(Y+hZ)  ≈  VaR(Y) + h  μ[Z|Y=VaR(Y)]  if h ≈ 0  for continuous distributed

random variables Y and Z. See also Gourieroux, Laurent  & Scaillet (2000).
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the following closed-end formula:

VaR1−αLP

           = VaR1−α [ μLP∣X LP−μLP∣X ]        

(11)

                 ≈ VaR1−α [ μ LP∣X ]    

           −1
2
[
δσ 2[LP∣μ LP∣X =s ]

δs
σ 2[LP∣μ LP∣X =s ]

δln f μ LP∣X s
δs

]
s=VaR1−α [ μLP∣X ]

Here, f μLP∣X s denotes  the density of the random variable  μ(LP|X ).  Note that  μ(LP|X ) is  a

scalar defined as a function of one or more systematic risk factors X = (X1,...,Xk).  Contrary to the

results presented in the literature, this formula for the granularity adjustment is not restricted to the

one factor case. 

An illustration  with  a  very simple  example  may be useful.  Consider  a  one-factor  model  for  a

completely homogeneous credit portfolio with Ai=1 for all  i and

Li={1 with probability p X 
0 otherwise  (12)

where p(X) is a monotone decreasing function of the systematic risk factor X. Then:

μ LP∣X = p X 

(13)

σ 2[LP∣μ LP∣X =s ]= s 1−s
n

Formula (11) then simplifies to 

VaR LP≈ p  xα−
1−2 p xα

2 n
−

p xα1− p  xα
2 n

δln f p X s
δs

∣s= p xα               (14)
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In this  case,  the granularity adjustment  is  inversely proportional  to  the number of loans  n and

converges to zero as n → ∞. 

3.2 Sign of the granularity adjustment

It has always been taken for granted in the existing literature that the granularity adjustment is

positive. However, if ones looks to the analytical formula for the granularity adjustment given by

equation (11), it is not immediately clear whether this is indeed always the case.

In order to develop a counterexample, consider the Vasicek model presented above in chapter 2.3.

For a completely homogeneous loan portfolio, the conditional default probability is:

p X =N 
N−1PD− ρ X

1−ρ
                                                                                  (15)

In appendix B, it is shown that this implies

δln f p X s
δs

∣s= pxα =
N−1[ p xα]2 ρ−1N−1PD1−ρ

ρ n [N−1 p  xα]
                             (16)

where  n()  denotes the density of the standard normal  distribution.  With α=30%,  PD=20% and

ρ=0,95, one has p(xα) = p(-0,52400) = 0,06957 and equations (14) then equals

VaR70%LP ≈ 0,06957−0,04311
n        (17)

If all loans have default a probability of 20% and the bank wants to survive with 70% probability,

the capital charge in a perfectly diversified portfolio would be 6,957%. However, in this example, a

not perfectly diversified loan portfolio requires a slightly lower (!) capital charge.  Although the

given  choice  of  the  parameters  may not  be  very realistic2,  the  example  shows  that  a  negative

granularity adjustment is indeed possible, at least theoretically.

2 Less realistic seem not to exit, as an intensive numerical analysis has shown. Note that in this example, the 20%
default probability of the loans is lower than the target 30% survival probability of the bank. However, if more and
more loans are added to the portfolio, almost certainly some of these loans will default and some capital reserves are
required to cover these losses. 
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From the analytical formula for the granularity adjustment, an explanation is possible how the lack

of  diversification  could,  in  certain  cases,  result  in  a  lower  VaR.  First  note  that  with  perfect

diversification, the bank collapses if μ(LP|X) > VaR1-α(LP) and survives if μ(LP|X) < VaR1-α(LP). If the

credit loan portfolio is not perfectly diversified, the bank could also collapse if μ(LP|X) < VaR1-α(LP),

and an additional capital buffer is therefore necessary to cover unsystematic risk. However, one

should also note that for a not perfectly diversified bank it is also possible to survive even though

μ(LP|X) > VaR1-α(LP). In the later case, in which all perfectly diversified banks would collapse, the

lack of diversification is obviously an advantage.

Which of these two cases has greater impact depends on the amount of unsystematic risk in the

respective scenarios,  which  is  expressed by the value of  the  conditional  variance,  and also the

occurrence  probabilities  of  these  scenarios.  If  the  conditional  variance  σ2(LP|μ(LP|X)=s)  is  an

increasing function of  s, the probability that the bank survives even though the realization of the

systematic factors is such that  μ(LP|X) > VaR  is relatively higher than the risk of collapse given a

scenario with  μ(LP|X) < VaR. In this case, the first summand  -δσ2/δs within the formula for the

granularity adjustment is negative. 

The second summand -(1/2)σ2 δln(fμ)/δs of the granularity adjustment is positive if the density of the

random variable μ=μ(LP|X) slopes downwards in the right tail, which will usually be the case. The

occurrence probability of a scenario where the conditional mean is above VaR - in which case all

perfectly diversified  banks would survive -  is  then higher than the probability of the opposite.

However, as the above example shows, there are certain cases where a negative first  summand

within the granularity adjustment outweighs a positive second summand. 

4. Conclusion

The analytical formula for the granularity adjustment has been embedded into a general multi-factor

model. This multi-factor model allows to distinguish between the unconditional and the conditional

world.  In the  later  case,  in  which values  of the systematic  risk factors are taken as given,  the

aggregated portfolio  loss  is  the  sum of  stochastic  independent  random variables  and  therefore

converges, if considered as a percentage of overall exposure, to the respective conditional mean.

However, only in a one-factor model this can be exploit for a decomposition of the portfolio loss.

Although  the  conditional  mean  is  the  general  expression  for  marginal  VaR,  in  a  multi-factor

framework  it  depends  on  the  overall  composition  of  the  portfolio  which  realizations  of  the
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systematic risk factors are particularly bad. The condition for which the conditional mean is to be

calculated can then not be stated independent from the portfolio.

In addition to the conditional mean, the conditional variance of the portfolio loss is also a useful

variable  in  analyzing the  riskiness  of  the portfolio.  It  is  given  as  the  weighted  average of  the

conditional variances of the individual loans, with the weights depending on exposure sizes. If all

these individual loans have the same conditional variance, the conditional variance of the portfolio

would be proportional to the Herfindahl index. But if loans do not only have different exposure

sizes, but also differ with respect to their default probabilities or the amount of loss in the event of a

default, the Herfindahl index may be an inappropriate measure of concentration risks. 

In general, the conditional variance depends on the value of the systematic risk factors, and its value

for particularly bad realizations of these factors are of special interest. A high conditional variance

in a very bad state of nature implies a relatively high chance that the actual portfolio loss is lower

than its conditional mean. Formally, this is the case then the conditional variance increases together

with the conditional mean. If the divergence between actual loss and its conditional mean prevents a

collapse of the bank, the lack of diversification would be an advantage. In this paper, it has been

shown that  this  indeed  implies  the  existence  of  numerical  examples  with  negative  granularity

adjustment.

The possibility of a negative granularity adjustment should not be very surprising as Artzner et al.

(1999) have shown that VaR is not sub-additive and therefore does not always account correctly for

diversification. Though it seems that a negative granularity adjustment is a rare event which only

occurs for very unusual parameter values, it gives another hint that VaR is a problematic measure of

risk.

12



Appendix A: Granularity Adjustment

First note that

           VaR1−αLP = VaR1−α [ μ LP∣X LP−μ LP∣X ]        

                 ≈ VaR1−α [ μ LP∣X ]
δVaR1−α [ μ LP∣X hLP−μLP∣X ]

δh
∣h=0

 1
2

δ2VaR1−α [ μLP∣X hLP−μ LP∣X ]

δh2 ∣h=0

Formula (11) for the granularity adjustment then is an immediate consequence of the following

Lemma:    

δVaR1−αYhZ 
δh

=μ [Z∣YhZ=VaR1−αYhZ ]

and

δ2 VaR1−αYhZ 

δh2 =−1
2
[
δσ 2Z∣YhZ=s

δs
σ 2Z∣YhZ=s

δln f YhZ s
δs

]
s=VaR1−αYhZ 

Proof:   

With abbreviation VaR=VaR1−α YhZ  one has

        0 = δ
δh

ProbYhZVaR

= δ
δh∫−∞

∞

∫VaR−hz

∞
f  y , z dy dz

= ∫−∞

∞
 δVaR

δh
−z  f VaR−hz , z dz

Because of
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f VaR−hz , z  = f Z  z∣YhZ=VaR f YhZ VaR

the result for the first derivative of VaR follows by dividing through by fY+hZ(VaR). To get the

second derivative, one proceeds as follows:

         0 = δ
δh∫−∞

∞
 δVaR

δh
−z  f VaR−hz , z dz

= ∫−∞

∞ δ2VaR
δ2 h

f VaR−hz , z  δVaR
δh

−z  δf VaR−hz , z 
δh

dz

= ∫−∞

∞ δ2VaR
δ2 h

f VaR−hz , z  δVaR
δh

−z 
2 δf s−hz , z 

δs
∣s=VaR dz

= δ2 VaR
δ2 h

f YhZ VaR∫−∞

∞
 δVaR

δh
−z 

2 δ [ f Z  z∣YhZ=s f YhZ s]
δs

∣s=VaR dz

= δ2 VaR
δ2 h

f YhZ VaR δ
δs

μ [ δVaR
δh


2

−2 δVaR
δh

zz2∣YhZ=s ]
s=VaR

f YhZ VaR

+ μ [ δVaR
δh

−z 
2

∣YhZ=VaR ]
δf YhZ s

δs
∣s=VaR

= δ2 VaR
δ2 h

f YhZ VaR δ [0−μ2Z∣YhZ=sμ Z 2∣YhZ=s]
δs

∣s=VaR f YhZ VaR

+ μ [ μZ∣YhZ=VaR−z 2∣YhZ=VaR]
δf YhZ s

δs
∣s=VaR

= f YhZ VaR [ δ2 VaR
δ2 h


δσ 2Z∣YhZ=s

δs
σ 2Z∣YhZ=VaR

δlnf YhZ s
δs


s=VaR

]

q.e.d.
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Appendix B

If X is a standard normal random variable and fp(X)(s) denotes the density of 

p X =N 
N−1PD− ρ X

1−ρ
                

Then:

δln f p X s
δs

∣s= pxα =
N−1[ p xα]2 ρ−1N−1PD1−ρ

ρ n [N−1 p  xα]

Proof:

 

   Prob  p X s = Prob [N  D− ρ X
1−ρ

s ]

= Prob [ X 
D−N−1s1− ρ

 ρ
]

= 1−Prob [X 
D−N−1s1−ρ

 ρ
]

= 1−N [
D−N−1s1−ρ

 ρ
]

with D=N−1PD . The density of p(X) is then given as:

f p X s=
d
ds

Prob p X s=n [ D−N−1s1− ρ
 ρ

] 1−ρ
nN−1s ρ

It follows that
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ln  f pX s=
−1
2

[
D−N−1s1−ρ

 ρ
]
2


N−1s2

2
ln  1−ρ

 ρ


and:

        
δln f pX s

δs =
D−N−1s1− ρ

 ρ
1−ρ
 ρ

1
nN−1s


N−1s

nN−1s

=
N−1s2 ρ−1D1− ρ

ρ
1

nN−1s

q.e.d.
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