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Abstract

The aim of this paper is to combine two hitherto unrelated lines of research, namely the granularity

adjustment technique for unsystematic credit risk and the theory of coherent risk measures.  In the

existing  literature,  it  has  always  been  taken  for  granted  that  such  a  granularity  adjustment  is

positive. In this paper, a counter-example is presented in which the granularity adjustment for VaR

takes negative value. A coherent risk measure, which is also sub-additive, is given by  ES.  It is

shown in this paper that the granularity adjustment technique could also be applied if ES is used as

a risk measure. It turns out that the granularity adjustment will then be always positive.
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1. Introduction

The aim of this paper is to combine two hitherto unrelated lines of research, namely the granularity

adjustment  technique  for  unsystematic  credit  risk  and  the  theory  of  coherent  risk  measures.

Unsystematic or  borrower specific  credit  risk vanishes  in  a perfectly diversified portfolio.  In a

conditional world, where the values of the systematic risk factors are taken as given, the aggregated

portfolio loss is the sum of stochastic independent random variables. It therefore converges to its

conditional  mean as  more  and  more  loans  are  added  (law of  large  numbers).  The  granularity

adjustment  corrects  for the  error  which  is  made if  risk  measures  like  Value  at  Risk  (VaR)  or

Expected Shortfall  ES are  applied not  on the  actual  portfolio  loss  variable,  but  instead on the

conditional  mean.  The  technique  was  introduced  by  Gordy  (2003),  (2004)  and  closed-form

expression of the adjustment term have been developed by Wilde (2001),  Martin and Wilde (2002)

and Emmer/Tasche (2005). 

In the existing literature, it has always been taken for granted that such a granularity adjustment is

positive. In this paper, a counter-example is presented in which the granularity adjustment for VaR

takes negative value. If calculation of the capital reserves is based on  VaR,  this would imply a

discount in terms of capital reserves for a less diversified credit portfolio. Arztner et al. (1999) have

shown that  VaR is  not  a  coherent  measure  of  risk.  In  particular,  VaR is  not  sub-additive  and

therefore does not always account correctly for diversification. A coherent risk measure, which is

also sub-additive, is given by ES. It is shown in this paper that the granularity adjustment technique

could also be applied if ES is used as a risk measure. It turns out that the granularity adjustment will

then be always positive.

The  paper  is  organized  as  follows.  Section  2  develops  a  general  factor  model  in  which  the

granularity adjustment technique can be embedded. In section 3, the impact of diversification is

then analyzed. Granularity adjustments for VaR and ES are developed in section 4, and some final

remarks are given in section 5.

2. The Model 

Consider a portfolio of n loans with exposure sizes A1,.., An. As a percentage of exposure size, the

difference between the current value of each loan and the value at the end of the planning horizon

(e.g. one year) is described by a random loss variable Li. Formally, the relative loss Li of the value
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of the loan could be positive as well as negative. It is therefore irrelevant whether losses are defined

on a book-value or a mark-to-market basis. For example, if a mark-to-market model is used, an

upgrading will result in a gain in market value and consequently implies a negative value of the loss

variable Li.

Let each Li  = Li(X,εi) be given as a function of some systematic risk factors X = (X1,...,Xk ) and an

unsystematic risk factor εi. The systematic risk factors may also be called background factors and

reflect the state of the business cycle in the different industry sectors. Each systematic risk factor

can be thought of being assigned to a certain sector of the economy. The systematic risk factors

generally have an influence on more than one borrower in the portfolio and are the reason why

default events are stochastic dependent. On the other hand, each unsystematic risk factor εi has an

influence on only one specific borrower. Unlike for the systematic risk factors, which may or may

not be correlated, unsystematic risk factors are always assumed to be pairwise independent.

Many credit risk models can be seen as special cases of this simple but very general approach.

Structural models such as the Merton (1974) model or CreditMetrics (1997) assume that default

events or rating changes are driven by the evolution of the value of the firm assets, which in turn

depend  on  the  realization  of  some  systematic  and  unsystematic  risk  factors.  The  risk  factors

therefore indirectly determine the potential loss  Li=Li(X,εi)  of each loan. Of course, the concrete

functional relationship depends on how the particular model is specified, which however is not

relevant for the general analysis.

A well-known example for an intensity or default rate model is CreditRisk+ (1997). This model

assumes that default probabilities pi = pi(X) are not constant, but a function of certain background

factors X = (X1,...,Xk ).  In order to  match this  into the  above framework,  assume that  to  each

borrower there is assigned  an additional unsystematic risk factor εi and then define:

Li X , εi={LGDi , if εiN−1[ pi X ]
0 otherwise

                           (1)

Here,  it  is  assumed  that  the  εi are  standard  normal  distributed  and  N-1 is  the  inverse  of  the

cumulative  normal  distribution  function.  LGDi is  the  loss  given  default  which  will  arise  with

probability pi = pi(X) .
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3. Diversification

Having the general factor model stated, it is now possible to clarify the role of diversification. As a

percentage of total exposure, the random loss of the entire portfolio at the end of the risk horizon is 

LP=
∑i=1

n
Ai Li

∑i=1

n
Ai

              (2)

Now assume that the realizations of the systematic risk factors X = (X1,...,Xk) occur  before the

realizations of the unsystematic risk factors εi. With given values of the systematic risk factors, LP is

the sum of stochastically independent random variables. Thus, the central  limit  theorem can be

applied. Conditional on X, the portfolio loss variable  LP is asymptotically normal-distributed with

mean

μ LP∣X =
∑i=1

n
Ai μ Li∣X 

∑i=1

n
Ai

       (3)

and variance

σ 2LP∣X =
∑i=1

n
Ai

2 σ 2Li∣X 

∑i=1

n
Ai

2        (4)

However,  it  is  easy  to  show  that  if  0<Amin<Ai<Amax  and  σ2(Li|X)<σ2
max  for  all  i with  finite

boundaries  Amax  and  σ2
max ,  then  σ2(LP|X)→0  as n→ ∞  for  every given  realization  of X.  For  n

sufficiently large, the conditional variance tends to zero and the probability for an arbitrary small

deviation of LP from the conditional mean μ(LP|X) gets arbitrary small. 

Therefore, as a consequence of the law of large numbers, the conditional portfolio loss becomes

non-stochastic  in  a  very large,  infinitely fine-grained credit  portfolio.  This  is  the  mathematical

formulation  of  the  fact  how  borrower-specific  or  unsystematic  risk  can  be  eliminated  through

diversification. The only risk that remains is systematic risk, that is the risk that the actual values of

the systematic risk factors X = (X1,...,Xk) result in a higher or lower value of the conditional mean
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μ(LP|X). If systematic risk factors are varying, the portfolio loss, considered as a percentage of total

exposure, fluctuates respectively.                 

If some lumpy credit  risk  remains  within  the  portfolio,  the  then non-zero conditional  variance

σ2(LP|X) is a natural measure for the amount of  unsystematic risk inherent to the credit portfolio.

The conditional variance will therefore play an prominent role in the formula for the granularity

adjustment  to  be  developed  later.  Note  that  the  conditional  variance  σ2(LP|X) depends  on  the

realization  of  the  systematic  risk factors.  In the  given context,  the  values  of  σ2(LP|X)  in  those

scenarios where the realization of the systematic risk factors give rise to high losses are of particular

importance. 

Two  additional  remarks  concerning  the  conditional  variance  can  be  made.  First,  as  a  direct

consequence of the so-called law of conditional variance, the average conditional variance over all

possible scenarios for the systematic risk factors equals the difference between the variance of LP

and the variance of μ(LP|X):

μ[σ2(LP|X)] = σ2(LP) - σ2[μ(LP|X)]    (5)

That  is,  the  expectation  of  σ2(LP|X) is  that  part  of  the  portfolio  variance  that  is  caused  by

unsystematic risk.

Second, the similarities between the conditional variance and the Herfindahl index are obvious. The

Herfindahl index 

H=
∑i=1

n
Ai

2

∑i=1

n
Ai

2   (6)

is  an  often  used  measure  to  quantify  the  degree  of  concentration  in  credit  portfolios.  It  is

proportional  to  conditional  variance  σ2(LP|X) if  it  is  assumed  that for  each  borrower i, the

conditional variances σ2(Li|X) of the individual loan loss variables Li are the same. This implies that

differences regarding the distribution of potential  losses between the different borrowers can be

neglected. Concentration risks can then only arise from differences regarding the exposure sizes Ai.

However, if loans not only differ with respect to exposure sizes, but also with respect to e.g. default
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probabilities or losses given default, then the Herfindahl index might be a to simple measure of

concentration risks.

4. Granularity Adjustment 

In calculating  VaR  or ES of the portfolio loss in a perfectly diversified credit loan portfolio, the

random variable LP can be replaced by the random variable μ(LP|X). If the portfolio is not perfectly

diversified,  an  adjustment  for  unsystematic  risk  has  to  be  made.  This  so  called  granularity

adjustment is the difference of the value of the respective risk measure if it is calculated for μ(LP|X )

and for LP, respectively. It can be derived via a sensitivity analysis of VaR and ES. 

4.1 Granularity Adjustment for Value at Risk

VaR = VaR1-α(LP) is the worst loss which will be only exceed with a small probability α. In case of a

continuous probability distribution, it is implicitly defined through:

Prob(LP > VaR1-α(LP)) = α (7)

If  one  looks  at  the  difference of  VaR for LP  and for  μ(LP|X ),  it  turns  out  that  the  first  order

approximation of the error term is zero. To get the formula for the granularity adjustment, it  is

therefore necessary to also know the second derivative of VaR. With the technical details left to the

appendix, one finally gets the following closed-end formula:

VaR1−αLP

           = VaR1−α [ μLP∣X LP−μLP∣X ]        

(8)

                 ≈ VaR1−α [ μ LP∣X ]    

           −1
2
[
δσ 2[LP∣μ LP∣X =s ]

δs
σ 2[LP∣μ LP∣X =s ]

δln f μ LP∣X s
δs

]
s=VaR1−α [ μLP∣X ]

Here, f μLP∣X s denotes  the density of the random variable  μ(LP|X ).  Note that  μ(LP|X ) is  a

scalar defined as a function of one or more systematic risk factors X = (X1,...,Xk).  Contrary to the
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results presented in the literature, this formula for the granularity adjustment is not restricted to the

one factor case. 

An illustration  with  a  very simple  example  may be useful.  Consider  a  one-factor  model  for  a

completely homogeneous credit portfolio with Ai=1 for all i and

Li={1 with probability p X =X
0 otherwise  (9)

In this case, the conditional default probability p(X)=X is identical to the systematic risk factor, and

one has:

μ LP∣X =X (10)

and

σ 2[LP∣μ LP∣X =s ]= s 1−s
n (11)

If x1-α denotes the quantile of the systematic risk factor X, formula (8) then simplifies to 

VaR LP≈ x1−α−
1−2 x1−α

2 n
−

x1−α1 x1−α
2 n

δln f X s
δs

∣s=x1−α
              (12)

Here, the granularity adjustment is inversely proportional to the number of loans n and converges to

zero as n → ∞. 

It has always been taken for granted in the existing literature that the granularity adjustment is

positive. However, if one looks to the analytical formula for the granularity adjustment, it is not

immediately clear whether this is indeed always the case. In order to develop a counterexample,

assume that in the above example the systematic risk factor X has the following density:

f X X ={750 x 0,2−x if 0x0,2
0 otherwise (13)
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Then  

δln f X s
δs

=
δ ln sln 0,2−s

δs
=1

s
− 1

0,2−s
(14)

It is also easy to check that 

ProbX 0,12=∫0

0,12
750 x 0,2−xdx=0,648 (15)

It follows that VaR64,8%[μ(LP|X )] = x64,8% = 12% and:

VaR64,8%LP≈ 0,12−0,16
n

(16)

If  the  bank  wants  to  survive  with  a  probability  of  64,80%,  the  capital  charge  in  a  perfectly

diversified portfolio would be exactly 12% of total exposure. A not perfectly diversified bank with

say n=100 loans would require a slightly lower (!) capital charge of only 11,84%.

From the analytical formula for the granularity adjustment, an explanation is possible how the lack

of  diversification  could,  in  certain  cases,  result  in  a  lower  VaR.  First  note  that  with  perfect

diversification, the bank collapses if μ(LP|X) > VaR1-α(LP) and survives if μ(LP|X) < VaR1-α(LP). If the

credit loan portfolio is not perfectly diversified, the bank could also collapse if μ(LP|X) < VaR1-α(LP),

and an additional capital buffer is therefore necessary to cover unsystematic risk. However, one

should also note that for a not perfectly diversified bank it is also possible to survive even though

μ(LP|X) > VaR1-α(LP). In the later case, in which all perfectly diversified banks would collapse, the

lack of diversification is obviously an advantage.

Which of these two cases has greater impact depends on the amount of unsystematic risk in the

respective scenarios,  which  is  expressed by the value of  the  conditional  variance,  and also the

occurrence  probabilities  of  these  scenarios.  If  the  conditional  variance  σ2(LP|μ(LP|X)=s)  is  an

increasing function of  s, the probability that the bank survives even though the realization of the

systematic factors is such that  μ(LP|X) > VaR  is relatively higher than the risk of collapse given a

scenario with μ(LP|X) < VaR. In this case, the first summand -(1/2)δσ2/δs within the formula for the

granularity adjustment is negative. 
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The second summand -(1/2)σ2 δln(fμ)/δs of the granularity adjustment is positive if the density of the

random variable μ=μ(LP|X) slopes downwards in the right tail, which will usually be the case. The

occurrence probability of a scenario where the conditional mean is below VaR - in which case all

perfectly diversified  banks would survive -  is  then higher than the probability of the opposite.

However, as the above example shows, there are certain cases where a negative first  summand

within the granularity adjustment outweighs a positive second  summand. 

4.2 Granularity Adjustment for Expected Shortfall 

ES is an often proposed alternative to VaR. It is defined as the average loss on condition that losses

are greater or equal than  VaR, and therefore does not only take into account the probability that

losses  exceed  VaR,  but  also  differentiates  between small  and very large violation  of  the  VaR-

threshold. This could be motivated by the fact that not only the probability that the bank collapses is

of interest to the depositors of the bank, but also whether they will loss everything or only a small

amount of money in case that the bank actually collapses. ES describes the expected loss in case of

a bank collapse1.

The formal definition of ES with confidence level 1-α is as follows:

ES 1−α LP=μLP∣LPVaR1−α LP

(17)

      = 1
α∫VaR1−αLP

∞
s dF LP

s

where F LP
s=Prob LPs is the cumulative probability distribution function of the portfolio

loss LP. From the substitution s=VaR1−r LP <=> F LP
s=1−r it is obvious that ES can also

be written as the average VaR for all confidence levels above 1-α:2

ES 1−α LP=
1
α∫0

α
VaR1−r LPdr    (18)

1 However, this implicitly assumes that depositors are risk-neutral or that a pseudo risk-neutral probability distribution
for the valuation of state-dependent pay-offs exists.
2 It is assumed that the distribution is continuous. Otherwise, certain additional considerations are necessary, see Pflug
(2000), Tasche (2002) for details.
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For this reason, ES is sometimes also called Conditional-VaR. Conversely, VaR1-α  can be get as the

derivative with respect to α of ES1-α  times  α. 

The formula for the granularity adjustment, if VaR is replaced by ES,  is as follows:

ES 1−α LP = ES 1−α [ μLP∣X LP−μLP∣X ]        

(19)

                 ≈ ES1−α [ μ LP∣X ]
σ 2[LP∣μ LP∣X =s ] f μ LP∣X s

2α
∣s=VaR1−α[ μ LP∣X ]

In case of the simple example which has been used in the previous chapter as an illustration for the

granularity adjustment, this now simplifies to:

ES 1−α LP≈∫0

α
x1−r dr

x1−α 1−x1−α f X x1−α
2 nα               (20)

The granularity adjustment for ES is the product of the conditional variance and the density  of the

conditional mean divided through by 2α. It can therefore never be negative. 

To get an intuition for this, assume 1,000 randomly generated values of the systematic risk factors

X(j)=(X1
(j),...,Xk

(j)).  In  each  scenario X=X(j),  the  conditional  expected  portfolio  loss  μ(LP|X(j)) is

calculated and the results are ranked beginning with the highest conditional loss:

μ(LP|X(1))  > μ(LP|X(2))  > μ(LP|X(3))  > (21)

ES99%[μ(LP|X)] then would be approximately the average of the 10 first results. 

In order to compare this with the result then LP instead of μ(LP|X) is taken as the argument of ES,

first assume that within each scenario X=X(j) the result for μ(LP|X(j)) is replaced by say 100 values of 

LP=
∑i=1

n
Ai Li X , εi

∑i=1

n
Ai

(22)
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all with X=X(j)  but with 100 different, randomly generated values of the unsystematic risk factors

ε1,...,εn. Because for every scenario with X=X(j) the average of these 100 values of LP roughly equals

μ(LP|X(j)), an approximation of ES99%[μ(LP|X)] is then given as the average of the first 1,000 results

out of a total of now 100,000 random realizations of LP. However, to get ES of LP instead of μ(LP|X),

such a replacement must be followed by a re-ranking of the results. It is clear that such a re-ranking

will give a higher or at best an equal average of the first 1,000 results. It follows from this simple

thought experiment that  ES of  μ(LP|X) could never overestimate  ES of  LP. As a consequence, the

granularity adjustment for ES must be positive.

Conclusion

The granularity adjustment has been developed as a technical tool which accounts for the remaining

concentration risks in a not perfectly diversified portfolio. The key idea is instead of calculating

systematic and unsystematic risk simultaneously, a two step model is developed with an add-up for

unsystematic risk. 

It has always been assumed that it goes without saying that such an add-up for unsystematic risk has

positive  value.  However,  a  counter example  was given in  this  paper  if  VaR is  taken as  a  risk

measure. To understand this phenomena, one should note that unsystematic risk could also prevent a

bank  collapse.  Particular  in  very bad  states  of  nature,  some  unsystematic  volatility  within  the

portfolio could be an advantage. It therefore depends on the value of the conditional variance in

such bad states of nature relatively to its value in the good states whether the granularity adjustment

will be in fact negative. 

The granularity adjustment  technique could also  be applied if  VaR is  replaced by  ES as  a  risk

measure.  Because  ES is  a  coherent  measure  of  risk  in  the  sense  of  Artzner  et  al.  (1999),  the

adjustment  term  will  then  be  always  positive.  Alongside  with  the  mathematical  formulas,  an

intuitive explanation for this result was also given. 
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Appendix:

The formulas  for the granularity adjustment  follow from a sensitivity analysis  of  VaR  and ES,

respectively. In the first step, the partial derivatives of VaR and ES are proven by the following 

1. Lemma:  Derivatives of VaR and ES

With abbreviation VaR=VaR1−α YhZ  , ES=ES 1−αYhZ  and random variables  Y,  Z  and

R, derivatives of VaR and ES are given as:

(i)   δVaR
δh

=μ [Z∣YhZ=VaR]

(ii)  δ2VaR
δh2 =−[

δσ 2Z∣YhZ=s
δs

σ 2Z∣YhZ=s
δln f YhZ s

δs
]
s=VaR

(iii) δES
δh = μZ∣YhZVaR

(iv) δES 2

δh2 = σ 2Z∣YhZ=VaR f YhZ VaR
α

(iv) is a special case of:

(v) δ
δh

μR∣YhZVaR =
Cov R , Z∣YhZ=VaR f YhZ VaR

α

Proof:   

ad (i):  0 = δ
δh

ProbYhZVaR

  = δ
δh∫−∞

∞

∫VaR−hz

∞
f  y , z dy dz

  = ∫−∞

∞
 δVaR

δh
−z  f VaR−hz , z dz
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Because of

f VaR−hz , z  = f Z  z∣YhZ=VaR f YhZ VaR

the result for the first derivative of VaR follows by dividing through by fY+hZ(VaR). 

ad (v): 

δ
δh

μ R∣YhZVaR

= δ
δh∫−∞

∞
r f Rr∣YhZVaRdr

= δ
δh∫−∞

∞
r
∫−∞

∞

∫VaR−hz

∞
f R ,Y , Z r , y , z dydz

α
dr

= ∫−∞

∞
r
∫−∞

∞
− δVaR

δh
−z  f R ,Y , Z r ,VaR−hz , z dz

α
dr

= ∫−∞

∞

∫−∞

∞
r  z− δVaR

δh


f R , Z r , z∣YhZ=VaR f YhZ VaR
α

dzdr

= [ μ RZ∣YhZ=VaR−μ R∣YhZ=VaRu Z∣YhZ=VaR]
f YhZ VaR

α

=
Cov R , Z∣YhZ=VaR f YhZ VaR

α

ad (iii): Having proved (v), one could proceed as follows:

       
δ
δh

ES YhZ  = δ
δh

μ YhZ∣YhZVaR

= μ Z∣YhZVaR δ
δh

μ YhZ∣YhZVaR

= μ Z∣YhZVaR δμYhZ∣YtZVaR
δt

∣t=h

= μ Z∣YhZVaR
Cov YhZ , Z∣YhZ=VaR f YhZ VaR

α

= μ Z∣YhZVaR
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ad (ii): From equation (18), it follows that

VaR1−α YhZ = δ
δα

[αES 1−αYhZ ]

Because of VaR=F Y
−11−α one has:

δ2

δh2 VaR1−αYhZ = δ2

δh2
δ
δα

[αES1−αYhZ ]

= δ [σ 2Z∣YhZ=VaR f YhZ VaR]
δα

= δ [σ 2Z∣YhZ=s f YhZ s]
δs

∣s=Var
δF Y

−11−α
δα

=
δ [σ 2Z∣YhZ=s f YhZ s]

δs
∣s=Var

−1
f Y VaR

= −[
δσ 2Z∣YhZ=s

δs
σ 2Z∣YhZ=s

δln f YhZ s
δs

]
s=VaR

q.e.d.

2. Granularity Adjustment

First note that for any risk measure r=VaR or r=ES:

           r LP = r [ μ LP∣X LP−μLP∣X ]        

                 ≈ r [ μLP∣X ]
δr [ μ LP∣X h LP−μ LP∣X ]

δh
∣h=0

 1
2

δ2 r [ μLP∣X hLP−μ LP∣X ]

δh2 ∣h=0

Because of the law of iterated expectation, which is also valid for conditional probability measures,

it is true that µ[µ(LP|X)|A] = µ(LP|A) for A = {µ(LP|X)=VaR} and A = {µ(LP|X)>VaR}. It follows

that the first derivative is zero for r=VaR and r=ES:
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δr [ μLP∣X hLP−μLP∣X ]
δh

∣h=0 = 0

The formulas for the granularity adjustment then are an immediate consequence of the results for

the second derivatives of VaR and ES.
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