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Abstract

This paper derives an explicit formula for portfolio variance then stocks are randomly picked. This 

is  done  by considering  the  portfolio  weights  as  random variiables.  The  main  result  is  that  the 

variance is roughly proportional to the Herfindahl index. In the special case of an evenly weighted 

portfolio,  variance  is  proportional  to  the  reciprocal  value  of  portfolio  size.  The  simultaneous 

influence of random stock picking and random stock returns is also analyzed by applying the law of 

total variance.
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1. Introduction

Where is no evidence in the literature that mutual funds systematically outperform the market1. 

Malkiel 2003a p. 24 famously argued that "a blindfolded monkey throwing darts at a newspaper’s 

financial  pages could select  a portfolio that  would do just as well  as one carefully selected by 

experts". Most studies of US mutual funds have found under performance relative to the market 

between 1% and 2% or roughly in the order of the yearly fees these funds charge to their customers 

(e.g. Daniel et al 1997, Carhart 1997, Chevalier and Ellison 1999, Wermers 2000, Malkiel 2003b, 

Elton et al 2007). Results for markets outside the US are a little bit more ambiguous, see Otten and 

Bams 2002; Ferreira et al 2006.

However, the return of a particular fund could deviate by a large amount from the average mutual 

fund return. Therefore, not only the mean of the distribution of mutual funds returns – which seems 

to be the market return minus fees -  is of interest, but also the variance or standard deviation of the 

distribution. If the variance is low, an investor in a mutual fund knows that the chances are high that 

the fund return is close to the market return, and vice versa. The variance of mutual fund returns 

depends on the correlation between stocks, on the number of stocks in the portfolio and on how 

evenly the investment is distributed among the stocks in the portfolio. The higher the number of 

different stocks in the portfolio, the less possible  is a large deviation from the market return. The 

overview given in  Exhibit  1 by Newbould and Poom 1993 shows that the traditional  literature 

recommends that  a  portfolio  of  between eight  and twenty stocks  is  the  minimum necessary to 

eliminate diversifiable risk.

The literature on how much stocks are enough for diversification starts with Evans and Archer 

1968. In a simulation analysis, they randomly select stocks out of the 470 securities listed in the 

Standard and Poor's Index for the year 1958. The portfolio size varies from 1 to 40 stocks. In each 

case, they determine the standard deviation for the 19 half year portfolio returns in the period from 

January 1958 to July 1967. Evans and Archer conclude that much of the unsystematic variation is 

eliminated by the time the 8th security is added to the portfolio.

Elton and Gruber 1977 develop an analytical expression for the relationship between the size of a 

portfolio and the expected value of its variance. The analysis is build on the assumption that the 

1 It should be noted that all market participants as a group cannot outperform the market. So assuming that mutual 
funds systematically outperform necessarily implies that all other private or institutional investors systematically 
underperform.
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investment is evenly distributed among randomly selected stocks. Since the variance of a particular 

portfolio  could  be  much  higher  or  lower  as  the  expected  value,  they  also  give  an  analytical 

expression for the variance of variance in order to construct confidence limits for the variance of a 

portfolio. In a further step, they construct another risk measure which they call total risk and which 

also accounts for the possibility that the mean of the portfolio return is different from the market 

return.

Statman 1987 considers an investment in the market portfolio - with the S&P 500 index as a proxy - 

which is levered with debt so that the risk is the same as an investment in a random portfolio with 

only a relatively small number of stocks. The return differential between these two investments can 

be interpreted as the benefit that an investor derives from increasing the number of stocks in the 

portfolio. He shows that a well-diversified portfolio of randomly chosen stocks must include at least

30 stocks for a borrowing investor and 40 stocks for a lending investor.

In Newbould and Poom 1993, portfolios were also build by randomly selecting stocks out of the 

S&P 500 index. The number of stocks in the portfolio is increased from 1 to 80. For each portfolio 

size, 1,000 random portfolios were constructed. They perform a historical simulation of portfolio 

returns   using monthly returns in the period January 1988 to  December  1990. Curves are then 

constructed that would statistically accommodate 99 percent, 95 percent, and 90 percent confidence 

intervals of the returns for the simulated portfolios. The results indicate that the minimum number 

of stocks needed to achieve diversification is much higher than 20 stocks. O'Neal 1997 considers 

portfolios  which  do  not  consist  of  individual  stocks,  but  of  more  the  one  mutual  fund.  He 

investigates how risk can be reduced through diversification by holding more than one mutual fund. 

The simulation analysis of  Domian et al 2007 uses an investment universe of 1,000 firms which 

consists of the 100 stocks with the largest market capitalization in each of 10 different industries. 

The number of stocks in the portfolio increases stepwise from 10 to 200. For each number of stocks 

in the portfolio, one million random portfolios are build in order to get the distribution of possible 

returns and ending wealth for the 20-year investment horizon 1985-2004.  They show that in this 

period 93 stocks were needed to reduce the chance to only 5% that the performance of a portfolio is 

worse than that of treasury bonds and 163 stocks to reduce this chance to 1%. 

Most of the previous literature on the relationship between portfolio size and risk, with Elton and 

Gruber 1977 being an exception, relies on a simulation analysis. In this paper, an explicit formula 
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for  the  variance  or  standard  deviation  of  randomly  build  portfolios  is  developed.  Analytical 

expressions not only allow to quickly calculate the riskiness of a portfolio for different market 

conditions, but are also helpful to identify those factors which influence the risk of a portfolio and 

to determine the sensitivity with respect to these factors. In the first part of this paper, returns of 

individual stocks are taken as given and the weights assigned to the different stocks in the portfolio 

are instead considered as random variables. The main result is that in a large investment universe 

the  variance  is  roughly  proportional  to  the  Herfindahl  index,  a  commonly  used  measure  of 

concentration.  It  follows herefrom that in  the special  case of an evenly weighted portfolio,  the 

variance is proportional to the reciprocal value of the number of stocks in the portfolio. Therefore, if 

the number of stocks in the portfolio is doubled, the variance reduces to one half and the standard 

deviation reduces by approximately 30%. This is a new result and the approach differs from that 

taken in Elton and Gruber 1977.

In the second part of the paper, returns of individual stocks are no longer taken as given. Assuming 

fixed individual stock returns corresponds to an analysis of the distribution of returns for  randomly 

build portfolios over a predefined period in the past. However, an investor in a mutual fund not only 

faces the risk whether the portfolio manager will pick the right stocks, but he also does not know 

what  the  future  returns  of  individual  stocks  will  turn  out  to  be.  Therefore,  the  simultaneous 

influence of random portfolio weights and random stock returns has to be studied. By applying the 

law of total variance, it  is possible to calculate the portfolio variance then returns of individual 

stocks and portfolio weights are both stochastic.
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2. Portfolio variance with weights as random variables

2.1 Overview

In this chapter returns of individual stock are taken as given. This assumption corresponds to the 

comparison of the performance of mutual funds for a given period in the past. In retrospect, it is 

known how individual stocks have performed. As a result of different investment strategies and 

different stock picking abilities, some funds have deliver a better performance than others. If a large 

number of funds are compared, the comparison of funds results in a whole distribution of different 

investment  returns.  This  distribution  can  be  characterized  by  its  mean  and  by  its  variance  or 

standard deviation. As already mentioned, the average return of mutual funds is approximately the 

market return minus fees. 

However,  less  attention  has  been  given  to  the  variance  or  standard  deviation  of  mutual  funds 

performance. An investor in a particular fund is exposed to the risk (or chance) that his fund  will 

perform worse  (or  better)  than  the  average  fund.  Generally,  the  variance  of  fund performance 

depends on two facts: First, on the correlation between individual stock returns. If individual stock 

returns are highly correlated, then different investment strategies and stock picking abilities would 

have only a small impact on the performance of a fund. Secondly, the variance of fund performance 

depends on in how many different stocks the fund invests and on how evenly the investment is 

distributed among these stocks. For example, a typical mutual funds holds between 40 and 100 

different stocks and top ten holdings consistently represent one third of the portfolio investment2.

Malkiel 2003b p.4  compares the performance of broadly diversified mutual funds in the period 

from 1970 to 2001. In 1970, there were 355 funds, of which 158 have survived until 2001. The 

distribution of under- or over performance after costs of these 158 funds relative to the S&P 500 

index is shown in Figure 1. Mean under performance is about -1.2%, approximately the average 

yearly fee charged by mutual funds. Malkiel  has not considered the standard deviation for this 

distribution, but a roughly estimation shows that this figure is approximately just below 2%.

2 Shawky and Smith 2005.
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Figure 1: Over- and under performance of survivor funds 1970 – 2001. 

Source: Malkiel 2003b, Fig. 4 p. 5

 

The aim of the following analysis  is  to  derive an analytical  formula for  the variance of funds 

performance based on the assumption that stocks are selected completely at random. The main idea 

can be illustrated by the following simple example: Assume that the investment universe consists of 

only five well  known stocks:  General  Electric,  IBM, Coca-Cola,  Microsoft  and Wal-Mart.  The 

performance of these stocks for the period from May 15, 2007 to May 16, 2008 is given by table 1. 

The average return or market return of these stocks is m = -5.84%, the population variance3 is

m
2 = 1.45% and the population standard deviation is m = 12.04%. 

     µm=
1
5 ∑i=1

5

ri=−5.84%

     m
2 =1

5 ∑i=1

5

r i−m
2
=1.45% , m=12,04%

     Table 1: Returns for 5 stocks  May 15, 2007 to May16, 2008

3 In this context, the population variance is used with denominator n rather than n − 1.
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Name Symbol
GENERAL ELECTRIC GE -23.60%
INTL. BUSINESS MACHINES IBM 5.80%
COCA-COLA KO -4.80%
MICROSOFT MSFT -14.70%
WAL-MART STORES WMT 8.10%

r
i



Now assume that 3 stocks are selected at random and one third of the total investment is allocated to 

each of  them.  53=10 different  evenly weighted portfolios  are  possible  with  k = 3  different 

stocks out of an investment universe with n = 5. The portfolios are listed in table 2. Since stocks 

have been selected at random, it is clear that the average performance of all funds is the already 

known market return m = -5.84%. However, the variation of funds returns now is much lower 

compared to the returns of individual stocks: Population variance is m
2 = 0.24% and population 

standard deviation is m = 4.9%. The aim of the following analysis is to develop a formula which 

allows to calculate variance and standard deviation as a function of n and k. The analytical result 

derived  below implies  that  in  the  present  example  variance  and  standard  deviation  have  been 

reduced compared to the single stock case in table 1 by the factors 6 and 6 .

r P=
1
10 ∑i=1

10

r P  i=−5.84 %

2 r P=
1
10 ∑i=1

10

r P i−m
2
=0.24 %  r P=4,9 %

Table 2: Returns for 10 randomly constructed portfolios
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1 GE IBM KO -7.53%
2 GE IBM MSFT -10.83%
3 GE IBM WMT -3.23%
4 GE KO MSFT -14.37%
5 GE KO WMT -6.77%
6 GE MSFT WMT -10.07%
7 IBM KO MSFT -4.57%
8 IBM KO WMT 3.03%
9 IBM MSFT WMT -0.27%
10 KO MSFT WMT -3.80%

i Portfolio rP(i)



2.2 An analytical result

Assume that the investment universe consists of  n stocks and that the returns  r=r1 , ... , rn of 

these stocks are taken as given and therefore non-stochastic. Random portfolios are constructed 

with  the  weights w= w 1 , ... , wn of  individual  stocks  considered  as  random variables.  These 

random variables always fulfill ∑
i=1

n

wi=1 . In practice, most of the weights will assume the value 

zero because  only a small fraction of the stocks in the investment universe will be selected for the 

portfolio. Since portfolio managers  have no bias towards particular stocks, all weights w i are 

assumed to have the same distribution.  Pairwise correlation  wi ; w j=  are also considered to 

be the same for all i≠ j .

First,  these assumptions imply that  w i=1/n for all  i.  In appendix A it  is shown that these 

assumptions also imply the following general result for the correlation between the weights of any 

two stocks

(1)  =
 wi ; w j
 wi  w j

= −1
n−1 for all i, j.

This result reflects the fact that weights are generally negatively correlated and that the correlation 

approximates zero if the number n of stocks in the investment universe increases. In the special case 

of n=2 ,  the correlation between w1 and w2 is −1 , since an increase of w1 implies that

w2 decreases exactly by the same amount.

It is now possible to calculate the portfolio variance conditional on given individual stock returns

(2) 2 ∑
i=1

n

wi r i∣r=r =∑
i=1

n

∑
j=1

n

r i r j σ  w i , w j

                     = σ2 wi∑i=1

n

r i
2  ∑

i=1

n

∑
j=1 i≠ j

n

r i r j
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Inserting =
−1

n−1 into (2) yields

(3) 2 ∑
i=1

n

wi r i∣r=r =σ2  wi∑i=1

n

ri
2  ∑

i=1

n

∑
j=1 i≠ j

n −r i r j

n−1 

                           = σ2 wi
n2

n−1 [1
n ∑i=1

n

r i
2 −1

n2 ∑i=1

n

ri
2  ∑

i=1

n

∑
j=1 i≠ j

n

ri r j]

                           =
σ2 win2

n−1 [1n ∑i=1

n

r i
2 −

1
n2 ∑i=1

n

r i
2 

2]
               =

σ2 win2

n−1 [1n ∑i=1

n

ri−r m
2]                 

where r m=
1
n ∑i=1

n

ri denotes the market return.

The  variance  of  returns  for  randomly  constructed  portfolios  is  proportional  to  the  population 

variance  of  individual  stock  returns  and  the  variance 2 wi of  the  portfolio  weights.  The 

calculation  of 2 wi requires  more  specific  assumptions.  The  case  of  an  evenly  distributed 

portfolios might serve as an example.

Example: There are n
k possibilities of choosing k stocks out of an investment universe with n 

stocks.  If  the investment  is  evenly distributed among these  k stocks,  the value of the portfolio 

weights w i then is  either 
1
k  or zero. On condition that a certain stock has already been chosen 

for  the  portfolio,  there  are n−1
k−1=k

n n
k possibilities  how  another  k –  1  stocks  out  of  the 

remaining n – 1 stocks in the investment universe can be selected for the portfolio. Therefore, the 

probability  that  a  particular  stock  will  be  included  into  the  portfolio  therefore  is
k
n and  the 
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distribution of the weights w i is given as follows

(4) w i =

1
k

with probability k
n

0 with probability 1−k
n

This implies  w i=1/n and σ 2w i=
1
k 2⋅

k
n
−1

n2 =
n−k
k n2 . Inserting the variance  into (3) yields

 

(5) 2 ∑
i=1

n

wi r i∣r=r = n−k
k n−1 [1n ∑i=1

n

r i−r m
2]

The introductory example in chapter 2.1 corresponds to the case n = 5 and k = 3.

For example, on May 27, 2008, where were n = 494 stocks which have been  included into the S&P 

500 index for at least one year. The population standard deviation of returns over the past twelve 

months for these 494 stocks was approximately 30%. If  k  = 9 stocks were chosen at random and 

with the investment evenly distributed among them, according to formula (5) the standard deviation 

of the returns of so constructed portfolios would be approximately 10%. If  k  = 100 stocks were 

selected, the standard deviation would be around 2.7%.

2.3 The case of an unevenly weighted portfolio 

In order to calculate 2 wi in the case of an unevenly weighted portfolio, assume that there are 

k  < n numbers  a=a1 ,... , ak  with  ∑
i=1

k

ai=1 . The selection process is as follows: First, one 

stock is chosen at random out of an universe of n stocks and a fraction a1 of total investment is 

allocated to that stock. The probability that a particular stock is chosen in the first round is 
1
n .  

Then, a second stock is chosen at random out of the remaining n−1 stocks and a fraction a2  is 

allocated to that stock. The probability that a particular stock is chosen not in the first round but in 

the second round is again 1−1
n
 1

n−1
=1

n and so on. Portfolio weights are therefore distributed 
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as follows 

(6) w i =

a1 with probability 1
n

...

ak with probability 1
n

0 with probability 1−k
n

Variance of random portfolio weights then is

(7) σ 2 w i=
1
n ∑j=1

k

a j
2−1

n ∑j=1

k

a j
2

=1
n ∑j=1

k

a j
2−1

n2

Inserting into (3) finally yields

(8) 2 ∑
i=1

n

wi ri∣r=r =n H−1
n−1 [1n ∑i=1

n

ri−r m
2]

where H is the Herfindahl index4 H=∑
j=1

k

a j
2=∑

i=1

n

wi
2 . In case of an evenly weighted portfolio with 

a i=1 /k  for all i, the Herfindahl index is given by H = 1/k. 

If the number  n of stocks in the investment horizon tends toward infinity,  portfolio variance is 

approximately  given  by  the  product  of  the  Herfindahl  index  and  the  population  variance  of 

individual stock returns

(9) 2 ∑
i=1

n

wi ri∣r=r =H [1n ∑i=1

n

r i−r m
2] if n∞

Note that the Herfindahl index is generally bounded by the minimal and maximal proportion of a 

stock in the portfolio

4 Note that the realization of the weights w i  is either a j , j=1,... , k or zero. 
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(10) amin=∑
i=1

k

ai amin≤H =∑
i=1

k

a i
2≤∑

i=1

k

ai amax=amax

If  for  example  no  stock  accounts  for  more  than amax=5 % of  all  holdings,  formula  (8) 

with H=5% would give an upper bound of the portfolio variance.

2.4 Extension: Dividing the investment universe into subcategories

Until now, it has been assumed that every stock has the same probability of being included into the 

portfolio. This assumption can be relaxed by assuming that stocks can be divided into different 

categories. For instance it may be possible to assign each stock to a certain industry. The portfolio 

manager  first  decides  which  fraction  to  invest  in  each  industry.  In  a  second step,  within  each 

industry  group,  stocks  are  selected  at  random.  Formula  (8)  makes  it  possible  to  calculate  the 

variance for each subportfolio. Since it is plausible that the picking of stocks in each subcategory is 

independent from  the stock picking in the other subcategories, portfolio variance is simply given as 

the sum of the variances of the subportfolios multiplied by the square of their weights.

In  the  most  simple case,  the portfolio  manager  can  distinguish between two subcategories,  for 

instance between growth and value stocks. The portfolio manager decides to invest a fraction f of 

total investment into growth stocks and the remaining into value stocks. If variables are marked 

with a superscript (g) for growth and (v) for value, respectively, and if weights w i
g  and w i

v are 

stochastic independent and fulfill ∑
i=1

n j

wi
 j =1 for j = v, g, then

 

(11) ∑
i=1

n

wi r i = f ∑
i=1

ng 

wi
g  r i

g   1− f  ∑
i=1

nv

wi
v ri

v

and

(12) 2 ∑
i=1

n

wi ri∣r=r = f 2 2∑
i=1

n g

w i
 g  r i

 g ∣r=r   1− f 22∑
i=1

n v

wi
v ri

v∣r=r 

The variance of the two subportfolios can be calculated by applying formula (8).
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3. Calculation of the unconditional portfolio variance

The previous results have been derived conditional on given individual stock returns. If instead both 

portfolio weights and stock returns are random variables, the situation can be described by the 

following two-step model:

 Step 1: Portfolio weights are chosen at random.

Step 2: Realization of individual stock returns

The unconditional variance can then be calculated by applying the law of total variance5

(13) 2 ∑
i=1

n

wi ri=[2∑
i=1

n

w i r i∣ w] 2[∑
i=1

n

wi r i∣w ]

Total  variance  is  the  sum  of  the  mean  of  the  conditional  variance  plus  the  variance  of  the 

conditional mean. Here, conditional mean and conditional variance depend on the realization of the 

weights w= w1 , ... , wn . Since no specific value is assigned to the weights, conditional mean and 

conditional variance are functions of random variables and therefore themselves random variables 

with a certain mean and a certain variance. 

However, it is more convenient to change the order of step 1 and 2. This is possible since it is 

plausible that the selection of the portfolio weights and the realization of stock returns are stochastic 

independent6:

 Step 1: Realization of individual stock returns.

Step 2: Portfolio weights are chosen at random.

Law of total variance then states the following

(14) 2 ∑
i=1

n

wi ri=[2∑
i=1

n

w i r i∣r ] 2[∑
i=1

n

wi r i∣r ]

5 See e. g. Weiss 2005.
6 Otherwise, the stochastic influence of the portfolio weights on stock returns must be incorporated into the model. If  

for instance Warren Buffet publicly announces that he will buy a certain stock, this will probably push up the price 
of the respective stock. In this case,  portfolio selection and stock returns are not independent. The law of total 
variance itself does not require stochastic independence.
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Mean and variance are now conditional on the stock returns r=r1 ,... , rn . Because the mean of 

randomly build portfolios is the market return (if fees are neglected)

(15) ∑
i=1

n

w i ri∣r =r m  

the  second part  of  the sum on the  right  hand sight  of  (14)  is  the  variance m of  the  market 

portfolio. The first part of the sum on the right hand sight in (14) is the mean of formula (8), with 

individual stock returns now being random variables. Inserting (8) into (13) gives

(16) 2 ∑
i=1

n

wi ri = n H−1
n−1

[1
n ∑i=1

n

 r i−rm
2]  m

2

In appendix B it is shown that (15) can be transformed into

(17) 2 ∑
i=1

n

wi ri=
n H−1

n−1 [1n ∑i=1

n

2 ri−m
2 1

n ∑i=1

n

 r i−m
2]m

2

The squared brackets now contain the difference between the average variance of all stocks and the 

variance of the market portfolio plus the variance of mean returns. If the CAPM

(17)  ri=r fim−r f 

is applied, it is shown in appendix C that this can also be written as

(18) 2 ∑
i=1

n

wi ri=
n H−1

n−1 [1n ∑i=1

n

2 ri−m
2 m−r f 

21
n∑i=1

n

i
2−1]m

2

In this formula, the sum of all squared beta-factors is used instead of the means of individual stock 

returns.
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4. Conclusion

The number of stocks in a portfolio depends on the amount of risk the investor is willing to accept. 

In this paper, an explicit formula has been derived which allows to calculate portfolio variance as a 

function of portfolio size or, more generally, as a function of the Herfindahl index, a commonly 

used  measure  of  concentration.  It  has  also  been  shown  how  to  account  for  the  simultaneous 

influence of random stock picking and random stock returns.

The use of the variance or standard deviation as a risk measure might be questioned.  An often 

proposed alternative risk measure is shortfall risk, the possibility that ending wealth will be less 

than a certain target amount. However, under the assumption of a Gauss normal distribution, the 

distribution  is  fully  characterized  by its  mean and variance  or  standard  deviation.  It  is  always 

possible to calculate shortfall risk with these two parameters. For instance, the probability that the 

result is not more than x = 2 standard deviations below the mean is N−1x ≈98% . 

The  validity  of  a  normal  distribution  at  least  for  sufficiently  large  portfolios  may be  justified 

because of the law of large numbers,  since the portfolio  composition is  then the sum of many 

independent stock picks. The case may be different for smaller portfolios, in particular if individual 

stock returns itself are not normal distributed. It is well known that time series of individual stock 

returns are fat tailed. A fat tailed distribution could also apply then the time period is fixed but 

returns for a large number of different stocks are compared. The investment universe may contain a 

few extreme outliers with a spectacular performance. For instance, in the 10 years from January 

1990 to January 2000, shares of Dell Computer increased 700 times in value, which corresponds to 

an average annual return of more than 92%. In particular for smaller portfolios it could then make a 

big difference whether the few superstocks in the investment universe – Dell, Microsoft or Google – 

are included into the portfolio or not. It might be argued that this risk is not fully covered by the 

variance or standard deviation. Further research is obviously needed.
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Appendix A

Propostion:

If w= w 1 , ... , wn are identical distributed random variables with pairwise identical correlation 

and if always ∑
i=1

n

wi=1 , then

  wi ; w j=
−1

n−1 for all i, j.

Proof:

1=µ[ ∑
i=1

n

w i
2
]

  =∑
i=1

n

 wi
2∑

i=1

n

∑
j=1, j ≠ i

n

 w i w j

  = nµ wi
2nn−1µ wi w j

This implies

µ wi w j=
1−nµ  w i

2
n n−1

Then together with  w i=
1
n

 wi w j=
µ wi w j−µ2 wi

µ wi
2−µ2 wi

=
1−nµ  w i

2
nn−1 −1

n2

µ wi
2−1

n2

= −1
n−1

Page 16 of 19



Appendix B

Proposition:

[1n ∑i=1

n

 r i−r m
2]=[1n ∑i=1

n

 i
2−m

21
n∑i=1

n

[ r i−m]
2]

Proof:

[1n ∑i=1

n

 r i−r m
2]=[1n ∑i=1

n

r i
2−r m

2 ]
      =1

n ∑i=1

n

 r i
2− rm

2 

      = 1
n ∑i=1

n

[ 2 r i2 ri]−m
2−m

2

      =1
n ∑i=1

n

 2 ri−m
21

n ∑i=1

n

2 ri−m
2

      =1
n ∑i=1

n

 2 ri−m
21

n ∑i=1

n

[ r i−m]
2

Appendix C

Proposition:

If  r i=r fim−r f  , then

1
n ∑i=1

n

 r i−m
2=m−r f 

21
n ∑i=1

n

i
2−1
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Proof:

 r i−m
2=[r fim−r f −m]

2

         = r f−m
21−i

2

         = r f−m
21−2ii

2

Since always 1
n ∑i=1

n

i=1 , it follows that

1
n ∑i=1

n

 r i−m
2=m−r f 

2[1
n ∑i=1

n

1−2ii
2]

     = m−r f 
2[1

n ∑i=1

n

i
2−1]
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