Value at Risk, Expected Shortfall, and
Marginal Risk Contribution

May 2002

Hans Rau-Bredow

Priv.-Doz. Dr. oec. puld. Hans Rau-Bredow
Leo Weismantel Str. 4
D-97074Wrzburg
Tel.: 093181591
mobil: 01788218853
hans.rau-bredow@mail .uni-wuerzburg.de
http://www.wifak.uni-wuerzburg.de/bwl4/namen/bredow?2.htm



Value at Risk, Expected Shortfall, and Marginal Risk Contribution

1. Introduction

Value & risk (VaR) is today the standard tool in risk management for banks and other
financial ingtitutions. It is defined as the worst lossfor a given confidence level: For a con-
fidencelevel of e.g. p=99%, one is 9% certain that at the end of a dosen risk horizon the-
re will be no greaer lossthan just the VaR. In terms of probability theory, VaR is the 1%
quantile (in general the (1-p)% quantile) of the profit and loss distribution.

A simple cae is the assumption of a normal distribution, because then VaR is simply a
multiple of the standard deviation® (e.g. for a confidence level of 99%, VaR is 2.33 stan-
dard deviations). In this case, the amncept of VaR would not generate any new theoretical
problems. VaR would only be adifferent, lesstedchnica form of risk reporting, in which
the term , standard deviation” is replaced by the perhaps easier to understand term ,,Value
at Risk”. However, it is wellkown that the assumption of a normal distribution is que-
stionable for stock market quotations. It is with particular importance for risk management
that high losses are far more probable in the stock market than the asumption of a normal
distribution would suggest. Also, if VaR is applied to credit risk, it isimmediately obvious
from the asymmetry of credit risk (small probability of a high loss far below the average
outcome) that the lossdistribution of a aedit loan portfolio cannot be described by a sym-

metric normal distribution.

Without the assumption of a normal distribution, VaR is a very problematic risk measure.
These problems will be illustrated in the next sedion. Subsequently, | concentrate on one
specific issue, namely convexity and sub-additivity of arisk measure. In order to chedk for
convexity, first and second derivatives of VaR are alculated. The same alculations are

then repeded for expeded shortfall, which is often proposed as an alternative for VaR.

! More generally, thisholds for al elliptic probability distributions.



2. Value at Risk asa problematic risk measure

For anill ustration of the problems of VaR as arisk measure, consider a bank where aVaR-
limit (confidence level 99%) of say 50 O00Euro is imposed on a cetain trader. The mea-
ning of this is that a loss of more than 50 000 Euro should occur only once in every
hundred trading days on average. But because of the very definition of VaR, there is no
differentiation between small and very large violations of the 50 000 Euro limit. The
eventual loss could be 60 000Euro as well as 600 000Euro. Therefore, in particular then
VaR isused as a aiterion for risk-adjusted compensation, the trader has an incentive to run
a strategy which would crede an additional profit in most cases, but at the expense of a
probability just below 1% of huge losses. For example, the trader could?:

* sell options far out the money and ean the respedive premiums, where the probabil ity
that the option will be exercised is below 1%.

» buy high yield bonds on credit, again on condition that the default probability of the
bonds is sufficiently low (such a strategy was reportedly persecuted by Long Term Capital
Management, the Hedge Fund which eventually brokes downin 1998

Of course, in every real-world bank, additional restrictions are probably in place which
will prevent the trader from running such strategies. But these alditional restrictions are
only necessary because of the given deficiencies of VaR. The emerging principal agent
problem could be cmpletely avoided if risk-adjusted compensation would be based on a

criterion which correctly refleds the riskiness of a portfolio.

Here, it is not my intention to give asystematic overwiew about all problems of VaR®. The
most important issles are:

* VaR could violate second order stochastic dominance and therefore does not always de-
scribe risk aversion in the traditional sense®.

* VaR is not smooth: Events with a probabil ity just below 1% are not taken into acount.

This changes immediatly if the probability is exadly or greater than 1%.

2 Jaschke (2001).

% A good overview is Pflug (2000). An axiomatic approach for so-call ed coherent risk measures has been deve-
loped by Artzner et d. (1999). VaR is not a wherent risk measure.

* Seefor example Guthoff et al. (1998).



* VaR isnot dways sub-additive: If VaR is calculated for ead unit within a bank, the sum
of the Values at Risk of each unit could be lower(!) than the VaR for the whole bank.
Obviously, this contradicts the ideaof diversificaion, because risk could than be reduced
by running each unit seperately. (These cntrifugal forces are presumably not in the
interest of the top management). The lack of sub-additivity makes VaR a problematic
criterion for portfolio gptimizaion, the internal allocation of cgpital, and for the design of
RAROC-type risk-adjusted compensation schemes.

For an example which illustrates why VaR is not aways sub-additive, consider a loan with
a default probability below 1%. For a portfolio which contains only one loan, VaR is ob-
viously zero. (There will be no losswith a probability of at least 99%). If sufficiently many
of such loans are pooled within the same portfolio, almost surely some of the loans will de-

fault, resulting in aVaR now greder than zero.

3. Derivatives of Value at Risk and Expected Shortfall

3.1 Preliminary remarks

In order to get a better understanding of the problems of VaR mentioned above, the margi-
nal behaviour of VaR if a new position is added to the portfolio could be studied. In prac-
tice, marginal risk contributions are often deduced from the contribution of the new positi-
on to the standard deviation of the portfolio. However, without the assumption of a normal
distribution, there is no close relationship between standard deviation and VaR. So what
we want to get is a general formula for marginal risk contributions which does not rely on

specific assumptions about the profit and lossdistribution.

Suppose that the value of the adual portfolio is described by arandom variable X and that
afradion a of another random variable Y is added to that portfolio. It is then possible to
calculate the derivatives of a cetain risk measure with resped to a. Of particular interest is
the second derivative which must be positive for a convex risk measure which fulfils the

property of sub-additivity. The standard deviation for example is a mnvex risk measure &



can be seen from the arve shape of the efficient frontier in the usual risk-return chart. We
conclude that the standard deviation is also sub-additive:

0%0(X +aY) _
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3.2 First and second derivative of Value at Risk

Let us now replacethe standard deviation by VaR as an alternative measure of risk. Assu-

me that X,Y are continuously distributed random variables (where fX denotes the den-
sty of X) and define VaRp(X +aY) as function of a implicitly by
Prob(-X —aY sVaRp( X +aY))= p=const.. We then have aniceresult: The derivative

of the VaR is the conditional expedation of the marginal position, on condition that the
actual value of the portfolio X and VaR are exadly identica®:

OVaRp(X +ayY)
oa

‘a:o =u(~Y| = X =VaR (X)

The intuiton behind this result is as follows: If X>VaR(X) (the a¢ual lossis already greder
than VaR) or if X<VaR(X) (there is aremainig buffer), adding a sufficiently small fraction
of a new risk would not change the outcome. Therefore, it seems plausible that the risk

contribution is the average value for al critical cases with X=VaR(X).

For the second derivative we get the following expression’:

® Note that the standard deviation isalso linea homogeneous, i.e. a(aX) = ao(X). The same holds for VaR and
expeded shortfall.

® Gourieroux et a. (2000), Tasche (1999.

" Gourieroux et a. (2000).
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This is the sum of two terms. The sign of the second term is positive if the density slopes
upwards in the left tail. This will usually be the case (if the distribution is unimodal). Un-
clea is the sign of the first term. To get an intuition, note that the new position which is
added to the portfolio could also lift the value of the portfolio above the VaR-threshold if a

violation of that threshold would otherwise occur. If 602(Y |x)/6x is negative (the vari-

ance is a deaeasing function of x), the dhancethat the new position prevents a violation of
the VaR-threshold is greaer than the crresponding risk that a violation of the VaR-
threshold is triggered by the new position. This explains why, in a second order approxi-
mation, the contribution to VaR could be lower than the respedive mnditional mean. The

bottom line is that we cannot be sure that the second derivative is always positive.
3.3 First and second derivative of Expected Shortfall

Expeded shortfall (ES) is defined as the average of all losses which are greaer or equal
than VaR, i.e. the average lossin the worst (1-p)% cases. For a @wntinuous distribution, ES
is the same a Conditional VaR, where Conditional VaR is defined as the arerage VaR for

all confidence levels above p:®

ESp(X) = ,u(-X|—X2VaRp(X)) = —— [ VaR(X)ds

1
1-p

TR

It follows that VaR is the negative derivative with resped to p of EStimes 1-p. (the follo-

wing results therefore antain the previous ones as gecial cases).

The first derivative of ES is the mnditional mean of the marginal position, now on conditi-

on that the portfolio value is below VaR®:

8 For a prodf, smply substitute z= VaRy(X) < s= Prob(-X <2).
® Tasche (1999.



aESp(X +aY)

5 a=0 = u(-Y| - X 2VaRp(X))

At this point, let ustry to get an intuition for marginal VaR and marginal ES. Consider a
Monte Carlo simulation with 1000iterations. The results are ranked from the worst lossto
the highest gain, so that VaR for a confidence level of 99% is the outcome in the 10" worst
scenario. The portfolio value in the 10" worst scenario is the sum of the values of each in-
dividual position. Accordingly, the values of the individual positions in that particular
scenario are the VaR-contributions or an estimation of the derivative of VaR. This illu-
strates why the derivative of VaR is the conditional mean, on condition that portfolio value
and VaR are identicd. However, the acaracy of a so cdculated predictor of the conditio-
nal mean is very doubtful, because a ompletely new Monte Carlo simulation could deliver
very different values for the individual positions. Only on the aygregate level for the port-

folio as awhole, such random errors due to simulation will be largely eliminated.

Now consider ES, which is the average portfolio value in the 10 worst scenarios. The @n-
tributionsto ES are the average values of the individual positions in the 10 worst scenarios,
in acordance with our formal result for the derivative of ES. In addition, becaise the
calculation of marginal risk contributions is now based on the outcome of 10 scenarios
(rather than only one), they are presumably less sibject to simulation errors. This advanta-

ge would be even greaer for asimulation with 50000r 10 000iterations.

But the advantage of ES lies not only in the alculation of the marginal risk contributions.
It also has the alvantage of being convex and sub-additive. This follows diredly from the
following expresson for the second derivative (this relatively simply expression is, to my

best knowledge, a cmpletely new result):

62ESp(X +aY)

‘a:O =—%2(Y|X=x) fX(x)E >0

1
9a2 1-p x=-VaR (X)



4. Outlook

As often, there ae bad news and good news. The bad news are that VaR, despite it is wi-
dely used in pradice is not an adequate measure of risk. In particular, VaR is not always
sub-additive and therefore an inappropriate tool for risk-adjusted performance measure-
ment and the internal allocation of capital. The good news are that an alternative to VaR is
given by ES, which not only fulfils the property of sub-additivity, but also makes it easier

to calculate marginal risk contributions in pradice

Many open questions remain. | see mainly two topics for future reseach. First, we have
always asumed that the random variables are continuously distributed. However, the &o-
ve results could be wrong for random variables with a discrete probabil ity distribution. So
the question arises what can be said about marginal risk contributions if random variables
are not continuously distributed. This is an important issue because all real-world probabi-
lity distributions are in fact discrete distributions (Consider credit risk as an important ex-

ample).

The second question relates to the interpretation of a risk measure. VaR is the amount of
equity capital which is needed so that the wnfidence level is the probability that insolven-
cy will not occur. ES however has at first sight no such obvious interpretation. We might
seeES asthe average loss of the aeditors of the bank in case of a default*®. However, this
either presumes risk neutrality or the adual probability distribution must be replaceal by a
pseudo risk neutral distribution. The question is then how to abtain the risk neutral distri-

bution in pradice

191f anew position is added to the portfolio, it then hasto be determined how much additional equity must be
hold so that expeded shortfall remains constant.



Appendix

OVaR (X +a)
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oa Y

d0°VaR (X +aY)
(i) P =

0a’
Bo?(YIX +ay = olnf (s)O
Da( |a a S)+02(Y|X+aY=s) X;aY B
H S S Es:—VaRIO(X)
OES (X +aY)
(iil) P = 2 (-X -aY|-X —aY 2VaR_(X +aY))
oa oa Y
= ,u(—Y|—X—aY2VaRp(X +ay))
OZESp(X ray)
' =—u(-Y|-X-a¥y=VaR (X +a
(iv) 3z aaﬂ( | IO( Y))
2 —
_ gy (Y|X +aY—s)fx+aY(s)B
1_
H P K - “VaR (X +aY)
Proof:
ad (i):

First note that the formula for the conditional density is given by:

f(—VaRp(X +aY)-ay,y)

f, (y|X+aY =-VaR (X +aY)) =
Y X
Y fX+aY( VaRp(X+aY))

Then:
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0= iProb(—X—aYsVaR (X +ay))
da p

a +0o +00
=— f(x,y)dxd
aa.[ (xy) y

S0 -VaR (X+aY)-ay

w 0VaR_( X +aY)

= I( +y) f(-VaR (X +aY)-ay,y)dy
- 0a P
O OVaRp( X+aY) e 0
= — |:|
E 5 +:[,y fY(y|X+aY s)dy) fy , y(S)

El;: —VaRp( X +aY)

6VaRp( X +aY)

= - u(-Y|-X-aY=VaR (X +av))
da P

ad (iv):

iy(—\(|—x —aY =VaR (X +aY))
da P

a+oo
=2 [-yf (y|-X-aY=VaR (X +av))d
ANl aY 2VaR (X +aY))dy

—VaRp(X+aY)—ay
5 v [ (X, y)dx
“oal Y

oo OVaRp( X +aY) f(—VaRp(X +aY)—ay,y)

_me( % y) 1-p y
Lo f,(y|X+aYy =s) f (s) O
:El(yz-yﬂ(Y|X+aY:s)) Y | o X+a¥ ™ g

= —VaRp( X +aY)

2 —
(Y[X +aY =s)f, +aY(S)B
1-p

L 6]

%: —VaRp(X +ay)
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ad(iii):
9 (X -aY|-X -aY zVaR (X +aY))‘
da P =0

0
=—(u(-X|-X-a¥y=VaR _(X +aY))+au(-Y|-X—-aY¥=VaR (X +a
= (u(=X| SO<Fav)+au(Y| NEST) I

H2( X |X =x) fy ()0
= [ 0 + u(=Y =X 2VaRp(X)) + 0 (because of (iv))

: 1-p %(z—VaRp(X)

= u(-Y[]-X 2VaRp(X))

To et the general result fora # 0, smply replace X by X+ay.
ad (ii):

With the relationship between VaR and ES and (iv), one gets.

OZVaRp(X +ayY)

aaz a=0

P 9°((1- p)ESp( X +aY))

ap 0a’ a=0
0, >
= -— Y| X=-VaR (X)) f, (-VaR _(X
37 (Y 200) fy (~VaR (X))
Loo?(Y |X = olnf, (x)O
o ( 6| X) +o?(Y|X =x) +D
5 % X = ~VaR (X)
The last sep follows becaise of VaRp(X) = —F)z 1(1— p), where F)zl isthe awmulative
e e . 6F>z1(1— p) -1
probability distribution function of X, and = . To get the
9 fy (31 p)

general result fora # 0, again replaceX by X+ay.
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